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Outline

 Thermal noise effects in an SC
Integrator

— Switch (KT/C) noise

— Opamp thermal noise
* Noise calculations in AX ADCs

* Noise calculation Example
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Noise Effects In SC Integrators

 The thermal noise sources are the switches and the opamp.

* Flicker noise is negligible if f_ .., << f.. If not, techniques such
as correlated double sampling or chopper stabilization can be

used.
PSD = 4kTR,,
2
;g d, I
VN L C, L l ¢y
o T ¢ I T3
S, S

12/21/2004 temes@ece.orst.edu 3/22



Switch Noise

* Noise charge power in C; (assuming ideal opamp):

End of ¢, End of ¢,
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 MS noise charge into C,, in every clock period:
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* This can be represented by an equivalent input voltage noise source
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Op-amp Noise (1)

« Simplified method, ignoring switch resistance during ®,=1

« Charge drawn by C, from C, in every clock period: C, v-. This effect
can be represented by equivalent input noise source Vv,, = V-
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Opamp Noise (2)
« To find v-, assume a single-pole model for the op-amp with w,=g,,,/C,

* OQutput MS voltage noise: * MS voltage noise of v-, by voltage division:

AL PR o KT
3C, 31+C,/C,)C,

CZ
« C, will extract a charge C,v- from C, in every clock period. This effect
can be represented by an input source v,..

« Since v, = V- + V,, an output equivalent source v, IS also required.
It represents the unity-gain output noise during @,=1
* Using B = 1/(1+C,/C,) as the feedback factor:

—  4kT —  4kT

Vi, =—— Vi, =——
n2 3CL ﬂ n3 3CL
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Integrator Noise Model

« Combining the effects of switch and opamp thermal noise:

* Insert these noise sources into every integrator and SC
branch.
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More Accurate Model

Assuming an output-compensated opamp,
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Noise power acquired by C, during @,=1:

4 kTC
FromR,, : KTC, fromv,,: o X = 2RO m
1+1/ x 3 x+1
Total power acquired in ®, and ©,,. 09 = 2kTC1(1+—1/ 6)
X+1
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Design Considerations

» The input — referred noise voltage V2, = 2, / C2, is minimized
forg,, >>1/R,,. This costs added power. Forg,,; <<1/R,,

the noise power is only 7/6 ~ 1.17 times larger.

* For several input capacitors, the noise charge powers add. For
two C1 branches, there is a 3 dB noise increase.

 In the model, now \Trf;: KT /3C,
X+1

remain unchanged. The overall input-referred noise is now
about 2dB lower than that obtained from the simpler model.

.The other two sources
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An Efficient Design Algorithm

From previous relations, at the end of @, =1,

gml=—— KT _(7/3+2x) where 7=(2R,, +1/9.,)C,

cl

IS the settling time constant of the stage, and \7Cl IS the

input-referred noise power .To minimize Ym: ,

1. Chooser =[(2In 2)(N +1) f_] the largest value allowed
for settling to N-bit accuracy;

(N+L)
2.Choose V3 =2"""v2 o

3. Choose X=2R_ 0, <<1

4.Find 9m and R,, from egs. above;
5.Find C; from C,=9,,7/(1+X)
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Example (Integrator)

LetC,=C,=2CL=1pF,9,;, =4 mA/V, R_=250kQ, 2R, = 0.5kQ,
fs = 100MHz. Then 2R, C, = C,/ (B9,,,)= 0.5ns =1/ 20fs , allowing for
accurate settling.

Integrating the output noise PSD over O to f; = f,/ (2 - OSR) gives
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Calculated and simulated integrated noise powers at the
output of the integrator. Simulation used [7].
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Noise Calculations in AX ADCs

« Step 1: Identify noise sources in the topology.

« Step 2: Calculate PSDs of noise sources.

« Step 3: Calculate transfer function from each noise source to output.

« Step 4: Integrate each noise PSD over desired bandwidth.

fS
20SR

| V2 NTF [ df
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« Step 5: Total noise power is sum of all contributions

N

2 . 2
VnTOTAL o Voj
J=1
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« Maximum SNR of a data converter:

Noise Budget

SNR

Maximum input
signal power

max
V2 z Total noise

NroTaL

power

« The total noise power includes contributions from several sources:

2 2 2 2 2
\Y =V, +V, +V +V
NroTaL Ny Mgy NopamP /\nOTHER
Quantization || Switch (kT/C) || Opamp Noise from
noise noise thermal other sources
noise (digital, etc)

« A good balance between these contributions:
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Example: Low-Distortion AX Topology

* In conventional topologies, integrator nonlinearities are attenuated by loop.
For low oversampling ratios, this is not effective.

« Distortion can be avoided by making STF = 1.

u
V
Feedforward
paths
S » TO next stage
Q : ::>+ H?
STF = =1 NTF= . =[-2*f

1+2H + H? 1+2H + H?
« Integrators do not process input signal, only quantization noise.

No signal = No distortion.
« For MASH structures, quantization noise can be tapped directly from y,,.
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Noise Calculation Example (1)

Step 1: Identify thermal noise sources in the topology:
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Noise Calculation Example (2)

« Step 2: Calculate PSDs of noise sources:

u Vn02
®
: 2
Yl = 9
y y \Y
H—e—{ HE) & Hz) F——(H)—{
-1 Vnil :—\C/@r;l Vni2 Y2
DAC
* Noise powers:
\EZZKTJFkT/:BCSl \a:4kT
C, X, +1 3C,
- 2kT  kT/3C, V= 2kT (CF1+CF2+CF3)+4kT
C., X, +1 C, 3C,

« The PSDs are obtained by dividing noise powers by f/2.
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Noise Calculation Example (3)

« Step 3: Calculate transfer function from each noise source to output:

u VnoZ
®
: 2
yhh = 9 v
C+>—®—»E®——®—» Hz) F—— ()|
-1 Vnil Vnol Vni2 Yla
DAC
« Assuming H(z) = z1/(1 - z*Y):
2 H+2 _ _
NTFil(Z): Izl +H2)|;| =271 -77? NTF02(2)= (1_|_ H)z = (1_2 1)(2_2 1)
+
H _ . 1 _
NTF,(z)= TH7 7 1-z7)  |NTF,(2) = a7 =[-z*
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Noise Calculation Example (4)

« Step 4. Integrate each noise PSD over desired bandwidth:
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(Tip: To save time, use a symbolic analysis tool such as Maple ™)
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Noise Calculation Example (5)

« Similarly:

2 14 4 ( T j : ( T j 18 . ( T j T Vnol
N2 =Vi,| ——+—cos —— |sin —=sin| —— ||~ Z—mL
OSR OSR OSR T OSR 30SR

2,2
Ni22 :V§i2 i—ESin(Lj ~ Vnizs
OSR 7« OSR 30SR

5 5 6 2(7[) (72')8.(72’) 7Z'Vn02
N2, =V. | ——=+—sin cos| —— [——sin| —— 2
OSR =~ OSR OSR T OSR 50SR

« Step 5: Finally, total noise is sum of all contributions:

2 N2 2 2 2
NTOTAL =Nj + Nol +Nj, + N02
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Numerical Example

Assume the loop operates with OSR=256, and choose x=2. Then,

v2,=8.25 107 2l+588x1(l‘? o axao AL

‘51 CSE CF]

Since C,, and C; dominate the noise performance, ignore the rest.
Assume maximum input power is 0.25V?2 ,and 16-bit noise
performance is desired. Total allowed noise power:

NZ., =38x107%V?2

total — rms

Allocating 75% of total noise to the thermal noise:

kT

~ 1.2 pF

{':5,1 = 8.25 ><10_3

0.75 * Nyor
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Additional Considerations

Wideband operation (OSR < 16):

— Input stage does not dominate noise. Optimization algorithms should be
used to minimize total capacitance while meeting the noise target.

Fully-differential circuits:

— Use same total capacitance as for single-ended circuit. Noise power
increases by 3 dB for each side, and by 6 dB for differential mode. Signal
power also increases by 6 dB, so total SNR is the same.

MASH topologies:
— Transfer functions should be calculated for whole system.
— Quantization noise is cancelled, and so is the noise from some sources.

Calculations assume brick-wall decimation filter.

— For more accuracy, actual transfer function of the decimation block can be
included in calculations.

|ISTF(f)| = 1 was assumed.
— Calculations are output referred. Signal power is affected by STF.
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