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Outline

• Thermal noise effects in an SC 

integrator

– Switch (kT/C) noise

– Opamp thermal noise

• Noise calculations in DS ADCs

• Noise calculation Example
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Noise Effects In SC Integrators

• The thermal noise sources are the switches and the opamp.

• Flicker noise is negligible if fcorner << fs. If not, techniques such 

as correlated double sampling or chopper stabilization can be 

used.

C1

vout’
vin

C2

vout
f2

f2f1

f1

f1

S1

S2 S3

S4

mINg

kT
PSD

3

16


onkTRPSD 4=



12/21/2004 temes@ece.orst.edu 4/22

Switch Noise

• Noise charge power in C1 (assuming ideal opamp):
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• This can be represented by an equivalent input voltage noise source 

vn1 with MS value:
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Op-amp Noise (1)

• Simplified method, ignoring switch resistance during Φ2=1

• Charge drawn by C1 from C2 in every clock period: C1 v-. This effect 

can be represented by equivalent input noise source vn2 = v-
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Opamp Noise (2)

• To find v-, assume a single-pole model for the op-amp with ωu=gm1/CL
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• MS voltage noise of v-, by voltage division:• Output MS voltage noise:

• C1 will extract a charge C1v- from C2 in every clock period. This effect 

can be represented by an input source vn2.

• Since vout = v- + vC2, an output equivalent source vn3 is also required. 

It represents the unity-gain output noise during Φ1=1

• Using b = 1/(1+C1/C2) as the feedback factor:
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Integrator Noise Model

• Combining the effects of switch and opamp thermal noise:
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• Insert these noise sources into every integrator and SC 

branch.



12/21/2004 temes@ece.orst.edu 8/22

More Accurate Model
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Total power acquired in Φ1 and Φ2:

Assuming an output-compensated opamp,

Noise power acquired by C1 during Φ2=1:

From Ron : from vno :

During Φ2 :

,
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Design Considerations
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• In the model, now .The other two sources

remain unchanged. The overall input-referred noise is now 

about 2dB lower than that obtained from the simpler model.

• For several input capacitors, the noise charge powers add. For

two C1 branches, there is a 3 dB noise increase.

• The input – referred noise voltage v2
c1 = q2

1 / C2
1 is minimized 

for gm1 >> 1 / Ron.  This costs added power.  For gm1 << 1 / Ron,

the noise power is only 7/6 ~ 1.17 times larger.
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An Efficient Design Algorithm
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From previous relations, at the end of Φ2 =1,

,where 

is the settling time constant of the stage, and is the 

input-referred noise power .To minimize ,

1. Choose ,the largest value allowed 

for settling to N-bit accuracy;

2. Choose  

3. Choose  

4. Find and from eqs. above;

5. Find from 
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Example (Integrator)

Calculated and simulated integrated noise powers at the 

output of the integrator.  Simulation used [7].

• Let C1 = C2 = 2CL = 1 pF, gm1 = 4 mA / V, RL = 250kΩ, 2Ron = 0.5kΩ, 

fs = 100MHz.  Then 2Ron C1 = C0 / (βgm1)= 0.5ns = 1 / 20fs , allowing for 

accurate settling.

• Integrating the output noise PSD over 0 to fB = fs / (2 · OSR) gives

f(Hz)
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Noise Calculations in DS ADCs

• Step 1: Identify noise sources in the topology.

• Step 3: Calculate transfer function from each noise source to output.

• Step 4: Integrate each noise PSD over desired bandwidth.

• Step 5: Total noise power is sum of all contributions
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• Step 2: Calculate PSDs of noise sources.
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Noise Budget
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• The total noise power includes contributions from several sources:

• A good balance between these contributions:
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Example: Low-Distortion DS Topology

• Integrators do not process input signal, only quantization noise. 

No signal  No distortion.

• For MASH structures, quantization noise can be tapped directly from yi2.

• In conventional topologies, integrator nonlinearities are attenuated by loop. 

For low oversampling ratios, this is not effective.

• Distortion can be avoided by making STF = 1:
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Noise Calculation Example (1)

• Step 1: Identify thermal noise sources in the topology:
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Noise Calculation Example (2)

• Step 2: Calculate PSDs of noise sources:
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• Noise powers:

• The PSDs are obtained by dividing noise powers by fs/2.
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Noise Calculation Example (3)

• Step 3: Calculate transfer function from each noise source to output:
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Noise Calculation Example (4)

• Step 4: Integrate each noise PSD over desired bandwidth:

(Tip: To save time, use a symbolic analysis tool such as Maple™)
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Noise Calculation Example (5)

• Step 5: Finally, total noise is sum of all contributions:
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• Similarly:
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Numerical Example

5.88v2
n = 8.25

8.25 
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• Since Cs1 and CC1 dominate the noise performance, ignore the rest. 

• Assume maximum input power is  0.25V2 ,and 16-bit noise

performance is desired. Total allowed noise power:

• Assume the loop operates with OSR=256, and choose x=2. Then,

• Allocating 75% of total noise to the thermal noise:

2122 1038 rmstotal VN −=
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Additional Considerations

• Wideband operation (OSR < 16):

– Input stage does not dominate noise. Optimization algorithms should be 

used to minimize total capacitance while meeting the noise target.

• Fully-differential circuits:

– Use same total capacitance as for single-ended circuit. Noise power 

increases by 3 dB for each side, and by 6 dB for differential mode. Signal 

power also increases by 6 dB, so total SNR is the same.

• MASH topologies:

– Transfer functions should be calculated for whole system.

– Quantization noise is cancelled, and so is the noise from some sources.

• Calculations assume brick-wall decimation filter.

– For more accuracy, actual transfer function of the decimation block can be 

included in calculations.

• |STF(f)| = 1 was assumed. 

– Calculations are output referred. Signal power is affected by STF.
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